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On Shapiro's Cyclic Inequality for N = 13 

By B. A. Troesch 

Abstract. A cyclic sum S(x) = E x,/( x +1 + xi+2) is formed with the N components of a 
vector x, where XN +1 = xi, XN+2 = x2, and where all denominators are positive and all 
numerators are nonnegative. It is known that there exist vectors x for which S(x) < N/2 if 
N > 14 and even, and if N > 25. It has been proved that the inequality S(x) > N/2 holds for 
N < 12. Although it has been conjectured repeatedly that the inequality also holds for odd N 
between 13 and 23. this has apparently not yet been proved. Here we will confirm that the 
inequality indeed holds for N = 13. 

1. Introduction. In his book Analytic Inequalities [9], Mitrinovic describes the 
interesting history of a problem suggested by H. S. Shapiro [13]. The conjecture that 
the solution should exhibit a symmetric structure seemed reasonable, considering the 
near-symmetry of the problem, but the true solution turned out to be more subtle. 

A cyclic sum S(x) = Exi/(xi+l + xi+2) is formed with the N components of a 
vector x, where XN+l = x1, XN+2 = x2, and where all denominators are positive and 
all numerators nonnegative. The vector x with all components Xk = 1 furnishes 
S = N/2. If, for all N and all x, the inequality S(x) > N/2 were to hold, the 
problem would probably not have attracted particular attention (see its mention in 
[7]). However, Lighthill [5] showed that the inequality does not hold for N = 20, and 
Zulauf sharpened this result to N = 14 [14]. On the other hand, Mordell [10] 
conjectured that a nonsymmetric x could be found for N > 7 such that S(x) < N/2. 

In steps the inequality was proved for N = 8 [4], N = 10 [11], and N = 12 [6], and 
then it follows from a general property [3] that S > N/2 is true for N < 12. For odd 
N the counterexamples turned out to be harder to come by, but they were found 
down to N = 25 [1], [2], [8]. The reason for the difference between odd and even N's 
was explained in [12]. Although it has been conjectured repeatedly that the inequal- 
ity also holds for odd N between 13 and 23, this has apparently not yet been proved. 
Here we will confirm that the inequality indeed holds for N = 13. 

For odd N between 13 and 23 there is apparently no general method available to 
prove the inequality except the approach used by Nowosad [11] and Godunova and 
Levin [6]: One has to consider separately all the cases where the zero components of 
the vector x appear in various positions. For large N the number of possibilities 
increases very rapidly, as the analysis in [11] and [6] shows. However, the number of 
cases to be discussed can be reduced significantly by taking advantage of two 
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additional facts stated in Sections 2 and 3. Whereas the basic result of Diananda [3] 
permits the conclusion that the inequality is satisfied for N = 11 because of the 
result in [6], it does not decide the question for odd N > 13. 

There exists at most one relative minimum for every case. This result, derived in 
[11], is important because the problem is nonlinear and is solved by minimizing the 
sum S for each case. Of course, when the stationary point is shown to be unique, it 
need not be checked for a minimum, because the boundary of the domain, i.e., 
Xk -O 0, is treated in connection with another case, and the sum S(x) must only be 
checked against N/2. There is also the possibility that no stationary point exists. If 
this cannot be proved, or if the stationary points found are not at a relative 
minimum, then no decision is reached. This means that it is not a priori clear that a 
decision can be reached in all cases, regardless of the effort spent, say, in a numerical 
search. 

The different cases are best characterized by listing the number of nonzero 
components of x after each zero. At the same time, only the nonvanishing terms of x 
will be numbered. For example, the notation (4, 1, 5) represents a case for N = 13, 
namely, 

X10X2X3X4X50X60X7 X8 X9 X10, 

with the sum 

5= ( X2 + X3 + X4+ X5)+xX6+ 
X3 + X4 X4 + X5 Xs X6 X7 

+ X7 + X8 + Xg + x1o + Xi 

X8 + xg X9 + x1o X1o + X1 X1 X2 

The three segments are X2 X3 X4 X5, X6, X7 X8 X9 X10 X1- 

2. The Pivotal Ratios. Let us call the group of terms between two zeros a segment. 
For instance, the example above consists of a 4-segment, a 1-segment, and a 
5-segment. A 7-segment would be 

***X10X2 X3 X4 X5 X6 X7 X8 0 X9 ** 

with the segment sum 

X2 X3 X4 X5 x6 X7 +X8. S7 + + x4 - + - +- X3 + X4 X4 + X5 X5 + X6 X6 + X7 X7 + xg x8 xg 

At a stationary value of S, the leading ratios of all segments have the same value. 
This is easy to see by considering as a typical example the 7-segment. Introducing in 
the usual manner [6], [11] the vector y by 

Y1 = x2, Y2= X3 + X4, Y3 X4 + X5,- *Y8 = Xs 

we have 

Yi Y2 +Y4 Y5 +Y6-Y7 Y3 +Yw-Y6 +Y7 

(2.1) Y2 Y3 Y4 

+ Y4 + Y6 -Y7-1 + Y5 + Y7-1 + Y61 +-. 
Y5 Y6 Y7 Y8 
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For a stationary value, the vanishing partial derivatives aS/aYk give 

tY1/Y2 + Y2/Y3 = 0, 

-Y2/Y3 - Y4/Y3 + Y5/Y3 - Y6/Y3 + Y7/Y3 + Y3/Y4 = 0, 

Y4Y3-Y3Y4- 
- Y5/Y4 + Y6/Y4 - Y7/Y4 + Y41Y5 = 0 

-Y5/Y3 + Y5/Y4 - Y4Y- Y6/Y5 + Y7/Y + Y5/Y6 = 0, 

Y6Y3 - Y6/Y4 + Y6/Y5 - YY6 -Y7/Y6 + Y6/Y7 = 0, 

-Y7/Y3 + Y7/Y4 - Y71/Y + Y7/Y6 - Y6/Y7 + Y7/Y8 = 0, 

-Y7/Y8 + Y8/Y9 = 0- 

The last equation follows from the observation that the next segment starts with the 
simple ratio Y8/Y9' 

By adding up all the middle equations we find that, denoting by u the common 
ratio of the first and of the last terms in each segment, 

u = Y11Y2 = Y2/Y3 = Y7/Y8 = Y8/Y9- 

This result is very helpful in the following way. In the example above, the case 
(4, 1, 5) is spelled out; another case would be (1, 4, 5). But the solution of the 
nonlinear system must be the same, because if the leading terms are identical the 
solution for the stationary vector y is also the same, except for the interchanged 
indices. Therefore, among all the possible combinations only those with increasing 
segment length need to be considered. For N = 10 and N = 12 this is of little 
significance, but the larger the N, the more important this observation becomes. 

3. A Reduction in the Number of Unknowns. Nowosad [11] has proved the 
following helpful result. If the relation between x and y, as introduced above, is 
written as x = Ay, and the matrix A is symmetric with respect to the second 
diagonal or can be put into such a form by a cyclic shift, then the cyclic sum is not 
altered by the transformation q = By, where B is the zero matrix, except for ones in 
the second diagonal. In other words, S(r) = S(y) everywhere-in particular, at the 
stationary points and in their neighborhoods. This fact, together with the theorem 
that S(y) can have at most one relative minimum for Yk > 0, furnishes important 
relations between the components of y. 

We want to show that a modification of this property can be derived in all cases, 
without the assumption of the second diagonal symmetry. The property will be 
explained with a specific example, but the general proof would follow the same line 
of argument. In Section 2 we have considered the example of a segment of length 7; 
the Y2 to y7 appear only in this particular segment, and the coupling 'to the 
neighboring segments is accomplished by yi and Y8. 

We now define X by the nonlinear transformation a = Ty: 

X1J = Y1, 

%12 = Y2Ys/Y8 = Y2' 

713 = Y2Y8/Y7, 

7J7 = y2Ys/Y3 

718 = Y2Y8/Y2 =Y 



202 B. A. TROESCH 

Then, with yj the leading element of the following segment, 

91lo = Y9YJ/Yi - l 

Since the coupling elements Yi and yg remain unchanged, the transformation T can 
be carried out on each segment separately. Inserting the y, we obtain 

57(a) = 711/712 + 717(1/718 - 1/717 + 1/716 - 1/715 + 1/714 - 1/713) 

+716(1/717 -1/76 + 1/715- 1/74 + 1/713) 

+715(1/716 -1/75 + 1/14 -1/713) 

+714(1/715 -1/74 + 1/713) + 713(1/714 - 1/713) + 712/73- 

But this turns out to be exactly the same function as (2.1) for this and all other 
segments, and, hence, 

S(y) = S(Ty). 

Since there is at most one relative minimum, we conclude that at such a point 
Y2Y8 = Y3Y7 = Y4Y6 Y5Y5s 

or, denoting the ratio Yk/Yk + 1 by rk, 
u=r2=r7, r3=r6, r4=r5- 

Quite generally, it can be shown for aj-segment that u = r2 = rj, r3 = rj- , ... , and, 
finally, 

rj12 = rj1/2+2 forj even, rj/2+ 1/2 = rj/2+ 3/2 forj odd. 

For segments up to length 5 (see below), these relations follow also directly from the 
equations for the stationary value. The number of unknowns is therefore reduced 
roughly by a factor of 2. 

4. Cases with Short Segments Only. We will show that S < N/2 is possible only if 
one segment has at least length 6. This is an extension of the known fact, based on 
the arithmetic-geometric mean inequality, that S > N/2 if no segment is longer than 
3. 

A 1-segment has only one ratio u, and S1 = u; a 2-segment has 52 = 2u. 
In the case of a 3-segment ... xl 0 X2 x3 x4 0 x5 , the sum is 

x 2 +X3 + X4 Yl + Y2 Y3 + Y3 

x3 + x4 X4 X5 Y2 Y3 Y4 

and, at the stationary point, 

YlIY2 = Y2/Y3 = Y3/Y4 = U. 

Since x3 > 0, we obtain the result that u > 1, which will be useful below. 
The contribution of a 4-segment to the cyclic sum is 

S4 = X2/(X3 + X4) + X3/(x4 + X5) + x4/x5 + x5/X6 

= Y1/Y2 + ( Y2 + Y4)/ Y3-1 + Y3/Y4-1 + Y4/Y5 

For the stationary value we obtain 

Yl/Y2 = Y2/Y3 -Y2/Y3 -Y4/Y3 + Y3/Y4 = 0, 

Y4/Y3- Y3/Y4 + )4/)5 = 0, 
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and, hence, with the notation introduced above, 

(4.1) -u + r3-1/r3 = O, 

or 

(4.2) r3 = (u + /u2 + 4 )/2 > 1. 

The sum S4 then becomes 

S4 = 3u-2 + r3 + 1/r3 = 3u + u2 + 4-2. 

After these preparations we now consider the cases where noj is larger than 4, with 
kj the number of j-segments, i.e., { k1, k2, k3, k4 }. This corresponds to a total length 
of 

N = 2k1 + 3k2 + 4k3 + 5k4, 

and the sum is 

S = ku + k4(Vu2 + 4 - 2) -k3 

where k = k, + 2k2 + 3k3 + 3k4. 
The product of all ratios rk in the sum must equal unity, i.e., 

ukrk4 = 1 

It follows from (4.1) that 

(4.3) U2a + Ua+l - 1 

with a = k/k4 > 3. Clearly, then, u < 1 and, furthermore, 

S > ku - k3. 

In order to compare S with N/2 we evaluate 

S -N/2 k3 +k2 +k3 +k41 
k k + 2k+k 2k 

u + 
2a. 

It can be shown in the following way that u > 1 - 1/2a. Since 

(1 - x/a)a < exp(-x) and e-1 + e1/2 < 1, 

we conclude that 

(1 - 12a )2a + (1 - 1/2a )a+ < (1 - 1/2a )2a +(1 - 1/2a)a < 1. 

The comparison with (4.3) shows that u > 1 - 1/2a and, therefore, S > N/2. 
The cases which include 5-segments as longest segments can also never lead to 

S < N/2. At the stationary value we have 

U = Y1/Y2 = Y2/Y3 = Y5/Y6 -Y2/Y3 - Y4/Y3 + Y5/Y3 + Y3/Y4 = 0, 

Y4Y3 - Y3/Y4 -Y5/Y4 + Y4Y/5 = 0- 

From the last equation, rewritten as 

r4- r3- 1/r4 + 1/r3 = (r4 -r3)(1 + 1/r3r4) = 0, 

we obtain r3 = r4, and, hence, 

-u + r3-1/r3 + 1/r32 = 0 or u-1 =(1-1/r3)2(1 + r3). 

If any 5-segment is present, we always have u > 1. 
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Furthermore, all xk must be nonnegative; hence, 

X5=y4-yY5 r3=r4 >1 

In the case described by { kl, k2, k3, k4, k5 } the product of all r 's is 

ukk k 
U r3kr3k= 1, 

where k = k1 + 2k2 + 3(k3 + k4 + k5). (Here, the second subscript of ri j refers to 
the j-segment.) If k5 + 0, then r3,5 > 1, and for the 4-segment r34 > 1. This leaves 
only the possibility u = 1, r3,, = 1-hence, a contradiction if k4 # 0, and if k4 = 0, 
then S = N/2. 

The conclusion is therefore that any case with S < N/2 must contain a segment 
of at least length 6. Even with a 6-segment present, some combinations can be 
readily eliminated, as we will show below. 

5. General Properties of Segments of Lengths 6 and 7. For segments of length 6, 
the unique relative minimum value, if it exists, can be found by a one-dimensional 
search. In order for the sum S6 to be a minimum, we must have 

u = rl = r2 = r6, -u - 1/r3 + 1/r3r4- 1/r3r4 + r3 = 0, 

/1r3 - r3- 1/r4 + 1/r3r4 + r4 = 0, 

where r3 = r5 has been used and the redundant equation omitted. The last equation 
shows that r4 < r3; from x6 = Y5- Y6 > 0 and x5 = y45-y + Y6 > 0, it follows that 
r3 > 1 and r4 - 1 + 1/r3 > 0. 

Linear combinations of the two equations above lead to 

(5.1) -u + 2/r3r4 - 1/r32r4 - 1/r4 + r4 = 0, 

(5.2) -ur3 -1 + 1/r3 - r3 + r3+ r4 = 0, 

and we conclude that 
ur3 > r4 > U. 

In the case { kl, k2, k3, k4, k5, k6 } the product of all the ratios is 

p = u kr3kr2k5r32k6r4k = 1, 

with k = k1 + 2k2 + 3(k3 + k4 + k5 + k6). 
Since the product of r3 4, r3,5, r3,6 is larger than unity and r46> u, it follows that 

p > 1, if k3 + k5 > 0. Therefore, no 3-segment or 5-segment can be present if the 
longest segments are of length 6. In other words, the possibilities are restricted to 

{kl, k2'0, k4, , k6} 
The resolution of a 6-segment leads to a one-dimensional search. One possibility is 

to carry it out by settiing r3 = p + E, r4 = p - E, which leads to 

p = 2 + 1/2e - 1, - 0 < E < 1/2. 
From a given ? we compute p, r3, r4, then u, and finally S6. The sum S6 is 

S6= 2(u + r3 + 1/r3 + r4- 2). 

Therefore, from a simple table, for every u (with increasing ?, u decreases from + oo 
to 0) the 6-segment sum S6 is determined, and also the product P6 = U3r326r46 (see 
Table 1). 
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TABLE 1 

Short table for the case (1, 1, 1, 6) 

? r3 r4 U p S 

0.05 3.0504 2.9504 2.7973 
0.10 2.1025 1.9025 1.7580 
0.15 1.6849 1.3849 1.2656 
0.20 1.4410 1.0410 0.9510 

0.2106 1.4016 0.9804 0.8967 1.00109 6.674355 
0.210625 1.4015 0.9803 0.8965 1.00000 6.673376 
0.2107 1.4013 0.9799 0.8962 0.99669 6.670410 
0.30 1.1699 0.5699 0.5329 
0.40 1.0403 0.2403 0.2341 
0.50 1.0000 0.0000 0.0000 

Similarly, the possibilities for segments of length 7 are also restricted. The sum S7 

is stationary if 

(5.3) -U - 1/r3 + 1/r3r4 - 1/r3r42 + 1/r3r2 + r3 = 0, 

(5.4) 1/r3 -r3 -1/r4 + 1/r4 - 1/r3r42 + r4 = 0, 

where u = r7, r3 = r6, r4= r5 have been used. A linear combination leads again to 
Eq. (5.2) and, hence, to 

(5.5) ur3 > r4. 

The general case { k, ...k . . ,k7 } has, as product of all terms, 

j=7 

H1 pk; 

If a 3- or 5-segment is present, then u > 1, and, hence, 

pi=u>1, p2=u2>1, p3=u3>1, p4=u3r34 >1 

p5 =3r3 5 ,> 1 p6 =ur326r46 > 1 7L P= U3r327r427 > . 

We therefore conclude that no 3- or 5-segment can be present if the longest segment 
is of length 7. 

6. Segments of Length 6 or 7 if N = 13. For N = 13, the above results leave the 
case (1, 1,1,6), with p = u3p6 and S = 3u + S6, as the only possibility with a 
6-segment. 

The numerical evaluation in Table 1 shows that p decreases monotonically with ?, 

and for p = 1 we obtain 

S = 6.67337 > 13/2. 

The case (2, 2, 6) can easily be shown to lead to a cyclic sum S which is never 
smaller than the cyclic sum for (1, 1, 8), and this case is considered below. 

As segments of length 7, only the case (4,7) need be considered, with p = 
6 = we no 

u r3,4r27r27 1. However, we now show that 

p = r34(ur37)2( 2r47 ) > 
r27(a r47) = ( ur47 4 > 1. 
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From (4.2) we have r34 > 1, and from (5.5), ur3 7> r4,7. Furthermore, (5.3) can be 
written as 

ur4 - 1 = (r3 - 1)(r3r4 - 1/r3r4 + r4 - Wr3 

and, since r3 > r4> 1, ur47 - 1 > 0. We conclude that, for N = 13, the inequality 
S > N/2 can possibly be violated only if one segment has at least length 8. 

7. The Remaining Cases for N = 13. There are now only the cases (1, 1, 8), (3, 8), 
(1, 10), and (12) to be discussed. As Nowosad [11, p. 447] has shown, the case with 
all xk # 0 need not be considered. 

The case (3, 8) can be taken care of by a general result valid for any 8-segment. 
There are three equations for the stationary value of S: 

I _ _ _ 1 1 
(7.1) -u -+ 1 + 2 2 + r3 =0, (7.1) -u r3 + r3r4 r3r4r5 r3r4r5 r3r4r5 

(7.2) r3- - 24+ r r2 r2 
r4 r4r5 ~r4r r3 r4r 

(7.3) - - r_- _ _ - r___ 

r3r4 r4 r5 r4r5 r3r4r5 5 

and the inequalities from the condition Xk> 0 are 

r3-1 > O, r4-1 + - > 0, r- 1 + -- > 0. 
r3 ~~~r4 r3 r4 

Equation (7.2), written in the form 

r - r3)( + 1) 3= + r3 - 1) < 0, 
5 \3)( r3r4/ r3r4 

furnishes the inequality r4 < r3. Incidentally, it can be shown that this inequality is 
true for segments of any length. 

Furthermore, the sum of Eqs. (7.1) and (7.2) leads to 

r3-1 I 1 I~ 
r4- (r-1 +- > 0 

r3r4r5 r4 r3r4 

or r4> u. 
A final useful relation, r, > u, follows from the sum of all three equations above: 

2 2 1 2 1 1 
-u - - + 2-2 + - __ 

r3r4r5 r3r4 r3 r4r5 r4rs r42r5 r 

which is the same as 

(r - u.)r32r42r = (r3r4 - r3 + 1)2 > 0. 

Considering the case (3, 8), we must have 

p =P3 p8 =u u 3U3r32r42r5, 

and in a 3-segment u > 1, which leads to a contradiction if the inequalities above are 
taken into account. 



ON SHAPIRO'S CYCLIC INEQUALITY FOR N = 13 207 

TABLE 2 
Case (1, 1, 8) Case (1, 10) Case (12) 

u 0.865229 0.840551 0.822033 
r3 1.300825 1.227239 1.164199 
r4 0.965448 0.937842 0.906890 
r5 1.307523 1.247627 1.723051 
X 2 0.354429 0.203704 0.101057 
S 6.625060 6.601225 6.591599 

The remaining cases (1, 1, 8), (1, 10), and (12) have admissible stationary points, 
say yo. These points are readily found numerically. At the stationary points, the 
Hessian and its eigenvalues are computed. It turns out that in all three cases we have 
indeed found the (unique) relative minimum. The numerical values are listed in 
Table 2. 

There always exists an eigenvalue A1 = 0 with eigenvector yo, because the function 
S(y) is homogeneous of zero degree in Yk. All other eigenvalues at a relative 
minimum are positive, and A 2, the smallest of them, is listed. 

This completes the consideration of all possible cases and proves that, for N = 13, 
S(x) > N/2 holds. 
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